17 research outputs found

    A dual-tag microarray platform for high-performance nucleic acid and protein analyses

    Get PDF
    DNA microarrays serve to monitor a wide range of molecular events, but emerging applications like measurements of weakly expressed genes or of proteins and their interaction patterns will require enhanced performance to improve specificity of detection and dynamic range. To further extend the utility of DNA microarray-based approaches we present a high-performance tag microarray procedure that enables probe-based analysis of as little as 100 target cDNA molecules, and with a linear dynamic range close to 105. Furthermore, the protocol radically decreases the risk of cross-hybridization on microarrays compared to current approaches, and it also allows for quantification by single-molecule analysis and real-time on-chip monitoring of rolling-circle amplification. We provide proof of concept for microarray-based measurement of both mRNA molecules and of proteins, converted to tag DNA sequences by padlock and proximity probe ligation, respectively

    Rapid Identification of Bio-Molecules Applied for Detection of Biosecurity Agents Using Rolling Circle Amplification

    Get PDF
    Detection and identification of pathogens in environmental samples for biosecurity applications are challenging due to the strict requirements on specificity, sensitivity and time. We have developed a concept for quick, specific and sensitive pathogen identification in environmental samples. Target identification is realized by padlock- and proximity probing, and reacted probes are amplified by RCA (rolling-circle amplification). The individual RCA products are labeled by fluorescence and enumerated by an instrument, developed for sensitive and rapid digital analysis. The concept is demonstrated by identification of simili biowarfare agents for bacteria (Escherichia coli and Pantoea agglomerans) and spores (Bacillus atrophaeus) released in field

    DNA Tools and Microfluidic Systems for Molecular Analysis

    No full text
    Improved methods are needed to interrogate the genome and the proteome. Methods with high selectivity, wide dynamic range, and excellent precision, capable of simultaneously analyzing many biomolecules are required to decipher cellular function. This thesis describes a molecular and microfluidic toolbox designed with those criteria in mind. It also presents a tool for graphical representation of nucleic acid sequences. Proximity ligation is a novel protein detection method that requires dual and proximate binding of two oligonucleotide-tagged affinity reagents to a protein or protein complex in order to elicit a signal. The responses from such recognition reactions are the formation of specific nucleic acid reporter molecules that are subsequently amplified and quantitatively detected. A scalable microfluidic platform suitable for fluorescence detection, cell culture, and actuation is also described. The platform uses rapid injection molding to produce microstructures in thermoplastic materials. By applying a thin layer of silica to the structures, a lid made of silicone rubber coated onto a thermoplastic support can be covalently bonded to generate enclosed channels. A method is presented for precise biomolecule counting, termed ā€œamplified single-molecule detectionā€. The method preserves the discrete nature of biomolecules, converting specific molecular recognition events to fluorescence-labeled micrometer-sized objects that are enumerated in microfluidic channels. I also present a novel microarray-based detection method. To attain high selectivity and a wide dynamic range, the method is based on dual recognition with enzymatic discrimination and amplification. Upon target recognition in solution, DNA probes are subjected to thousand-fold amplification in solution, followed by selective detection on arrays and another hundred-fold amplification of reporter molecule created from the first amplification reaction. Lastly, I describe a novel graphical representation of nucleic acid sequences using TrueType fonts that can be of value for visual inspection of DNA sequences and for teaching purpose

    DNA Tools and Microfluidic Systems for Molecular Analysis

    No full text
    Improved methods are needed to interrogate the genome and the proteome. Methods with high selectivity, wide dynamic range, and excellent precision, capable of simultaneously analyzing many biomolecules are required to decipher cellular function. This thesis describes a molecular and microfluidic toolbox designed with those criteria in mind. It also presents a tool for graphical representation of nucleic acid sequences. Proximity ligation is a novel protein detection method that requires dual and proximate binding of two oligonucleotide-tagged affinity reagents to a protein or protein complex in order to elicit a signal. The responses from such recognition reactions are the formation of specific nucleic acid reporter molecules that are subsequently amplified and quantitatively detected. A scalable microfluidic platform suitable for fluorescence detection, cell culture, and actuation is also described. The platform uses rapid injection molding to produce microstructures in thermoplastic materials. By applying a thin layer of silica to the structures, a lid made of silicone rubber coated onto a thermoplastic support can be covalently bonded to generate enclosed channels. A method is presented for precise biomolecule counting, termed ā€œamplified single-molecule detectionā€. The method preserves the discrete nature of biomolecules, converting specific molecular recognition events to fluorescence-labeled micrometer-sized objects that are enumerated in microfluidic channels. I also present a novel microarray-based detection method. To attain high selectivity and a wide dynamic range, the method is based on dual recognition with enzymatic discrimination and amplification. Upon target recognition in solution, DNA probes are subjected to thousand-fold amplification in solution, followed by selective detection on arrays and another hundred-fold amplification of reporter molecule created from the first amplification reaction. Lastly, I describe a novel graphical representation of nucleic acid sequences using TrueType fonts that can be of value for visual inspection of DNA sequences and for teaching purpose

    Gold Nanowire Based Electrical DNA Detection Using Rolling Circle Amplification

    No full text
    We present an electrical sensor that uses rolling circle amplification (RCA) of DNA to stretch across the gap between two electrodes, interact with metal nanoparticle seeds to generate an electrically conductive nanowire, and produce electrical signals upon detection of specific target DNA sequences. RCA is a highly specific molecular detection mechanism based on DNA probe circularization. With this technique, long single-stranded DNA with simple repetitive sequences are produced. Here we show that stretched RCA products can be metalized using silver or gold solutions to form metal wires. Upon metallization, the resistance drops from TĪ© to kĪ© for silver and to Ī© for gold. Metallization is seeded by gold nanoparticles aligned along the single-stranded DNA product through hybridization of functionalized oligonucleotides. We show that combining RCA with electrical DNA detection produces results in readout with very high signal-to-noise ratio, an essential feature for sensitive and specific detection assays. Finally, we demonstrate detection of 10 ng of Escherichia coli genomic DNA using the sensor concept

    Comparative and Functional Genomics Conference Review Padlock and proximity probes for in situ and array-based analyses: tools for the post-genomic era A background to molecular analyses

    No full text
    Abstract Highly specific high-throughput assays will be required to take full advantage of the accumulating information about the macromolecular composition of cells and tissues, in order to characterize biological systems in health and disease. We discuss the general problem of detection specificity and present the approach our group has taken, involving the reformatting of analogue biological information to digital reporter segments of genetic information via a series of DNA ligation assays. A background to molecular analyses Complete genome sequences are becoming available for an increasing number of organisms, allowing research on the corresponding species to transit to a post-genomic phase. Studies can now be founded on extensive parts lists, comprising all protein-coding genes as well as regulatory and structural genetic elements, common genetic variants and predicted repertoires of proteins of these organisms. It remains contentious just how sense can best be made of variable patterns of gene expression, of skewed distribution of common genetic variants among healthy and affected individuals, or of the representation of protein sets in different samples. Nonetheless, the opportunity to specifically demonstrate the presence, concentration, distribution and relative location of all these molecular components clearly will provide a basis for entirely new insights into normal biological processes and disease mechanisms. Despite impressive progress in development of tools for macromolecular analysis, such techniques remain crucial limiting factors for capitalizing on genomic information in biological studies. At its core, the problem of analysing macromolecules in biological samples is one of specificity of detection, and the requirements are extreme: the two doublestranded haploid genomes in any human interphase cell together comprise approximately 13 billion nucleotides that must be searched to find a particular single-nucleotide variant. An unexpectedly large proportion of the genome, maybe half, can be transcribed to RNA In this review, we will discuss reaction mechanisms developed by our group for advanced macromolecular analyses. The three main interrelated technologies to be described are padlock probes and proximity ligation probes for nucleic acid and protein analyses, respectively, and rolling-circle amplification as a general means of sensitive localized and solution-phase detection
    corecore